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Abstract 

The Darwin equations, which describe the multiple 
Bragg reflection of X-rays or neutrons in a mosaic 
crystal slab, have previously been solved only for 
special cases. Here, the complete and exact analytical 
solution of these equations is obtained for both the 
Bragg case (reflection geometry) and the Laue case 
(transmission geometry) with the help of a computer 
algebra program and it is shown that the resulting 
general expressions for both the reflectivity R and the 
transmissivity T can each be expressed in a compact 
form. It is found, for example, that for a mosaic crystal 
anomalous absorption occurs only in the Bragg case and 
not in the Laue case. This is in contrast to the dynamical 
theory of diffraction, which applies to an ideally perfect 
crystal, where anomalous absorption (due to the 
Borrmann effect) is found in both Laue and Bragg 
cases. With this new general expression for R, the 
Fankuchen gain is calculated for a crystal of finite 
thickness, taking correctly into account the effects of 
both absorption and secondary extinction. General 
expressions for the optimum crystal thickness are also 
obtained for both Bragg and Laue cases. In a companion 
paper, these general results are applied to a detailed 
numerical calculation of the reflecting properties of 
various neutron monochromator crystals. 

1. InWoducfion 

The Darwin equations (Darwin, 1922), which describe 
the multiple Bragg reflection of X-rays or neutrons in a 
mosaic crystal, are a coupled system of two linear 
homogeneous first-order differential equations with 
constant coefficients. If the crystal takes the form of a 
plane slab, these equations should be exactly solvable in 
terms of elementary functions. In fact, such a solution 
has previously been obtained only for special cases: i.e. 
for symmetrical reflections (Zachariasen, 1945), where 
the Bragg planes are either parallel or perpendicular to 
the surface, for a non-absorbing crystal (Sears, 1977) 
and for an infinitely thick crystal (Darwin, 1922). 

That the general solution of the Darwin equations has 
not previously been obtained may be due to the 
algebraic complexities that arise. This is the kind of 
problem that is ideally suited to a computer algebra 

program. We have succeeded in obtaining the complete 
and exact analytical solution of these equations for both 
the Bragg case (reflection geometry) and the Laue case 
(transmission geometry) by using the program 
Mathematica (Wolfram, 1991) and the results are 
described in the present paper where we show that the 
resulting general formulas for both the reflectivity R and 
the transmissivity T can each be expressed in a compact 
form. Our general expressions for R reduce to those 
obtained by earlier authors for the special cases 
mentioned above. 

The term 'anomalous absorption' refers to the change 
in the absorptivity of a crystal that occurs in the 
presence of a Bragg-reflected beam. We find that for a 
mosaic crystal such anomalous absorption occurs only 
in the Bragg case and not in the Laue case. This is in 
contrast to the dynamical theory of diffraction, which 
applies to an ideally perfect crystal, where the 
anomalous absorption is due to the Borrmann effect 
and occurs in both Laue and Bragg cases (Batterman & 
Cole, 1964; Sears, 1989). 

The Fankuchen gain G is the ratio of the reflected 
flux when the Bragg planes make an angle ot with the 
surface of the crystal to the flux when ct -- 0. An oft- 
quoted result in the X-ray literature (Bozorth & 
Haworth, 1938) is that the maximum value of G is 2. 
However, this result is of quite limited validity. 
Firstly, it only includes the effect of absorption on the 
reflectivity and ignores the effect of secondary 
extinction, which is usually not negligible, especially 
for neutrons. Secondly, it is only valid for an 
infinitely thick crystal, which again is usually not a 
good approximation for neutrons. Using our new 
general expression for R, we can now calculate the 
Fankuchen gain for a crystal of finite thickness, taking 
correctly into account the effects of both absorption 
and secondary extinction. We then find that values of 
G larger than 2 are possible. 

We also study the way in which the reflectivity 
behaves in the neighborhood of the Fankuchen position, 
i.e. the position where the transition from the Lane to 
the Bragg case occurs and the reflected beam is parallel 
to the surface of the crystal. We find that, for an 
absorbing crystal, there is a discontinuity in R at this 
position, but in a non-absorbing crystal there is only a 
cusp. 
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The question of optimum thickness is an important 
consideration in the design of monochromator crystals. 
In the Bragg case, this can be taken to be the thickness at 
which R reaches some specified fraction of its saturation 
value and, in the Laue case, it is the thickness at which 
R reaches its maximum value. We derive general 
expressions for the optimum thickness for both the 
Bragg and Laue cases. 

There are four different ways in which a mono- 
energetic beam of neutrons can be reflected from a 
given set of Bragg planes. We show that these various 
ways are related by parity and time reversal, and 
calculate the way in which R and T transform under 
these symmetry operations. 

The attenuation coefficient/z in the Darwin equations 
is the cross section per unit volume for all collision 
processes other than Bragg reflection. For neutrons, /z 
includes contributions not only from true absorption 
(e.g. radiative capture) but also from incoherent 
scattering and coherent inelastic scattering. At ther- 
mal-neutron wavelengths, the largest contribution to/z  
comes from coherent inelastic scattering in most 
materials at or above room temperature. Except in 
hydrogenous materials, the incoherent scattering term is 
usually very small and the absorption term is large only 
at long wavelengths in most materials. We derive a 
simple expression for the contribution to /z from 
coherent inelastic scattering that is based on the 
assumption that the motion of different atoms is 
statistically independent, while the distribution of 
vibrational frequencies is the same as in the actual 
crystal. With these assumptions, the coherent inelastic 
contribution to/z depends only on the root-mean-square 
displacement of an atom, which is the same parameter 
that.determines the Debye-Waller factor. 

In a companion paper (Sears, 1997, hereafter 
referred to as paper II), we apply the above-mentioned 
results to a detailed numerical calculation of the 
reflecting properties of various neutron monochromator 
crystals. 

2. Darwin equations 

The Darwin equations describe the Bragg reflection of 
X-rays or neutrons in a mosaic crystal. For simplicity, 
we shall formulate our discussion in terms of neutrons. 
Nevertheless, the results apply equally to X-rays, and 
we shall indicate where any minor differences in detail 
occur. 

We consider a mosaic crystal in the form of a plane 
slab of thickness d and infinite lateral extent, and 
suppose that a collimated monoenergetic beam of 
neutrons is incident on this crystal such that Bragg's 
law is satisfied for only one set of reflection planes 
(hkl). Let I(z) denote the incident-neutron current 
(neutrons s - i)  at a depth z inside the crystal and l'(z) 
the corresponding reflected-neutron current. These 

quantities are then determined for 0 < z < d by the 
Darwin equations (Darwin, 1922): 

[d/dz + (~ + t~)]l(z) = t~'/'(z), 
(1) 

[:kd/dz + (o~' + fl')]l'(z) = ill(z), 

where the plus sign is for the Laue case (transmission 
geometry) and the minus sign for the Bragg case 
(reflection geometry). These two cases are illustrated in 
Fig. 1, and the relations between the various angles in 
this figure are given in Appendix A 1. The coefficients in 
(1) are given by 

ot = / z / s i n  ~0, fl = a~ sin ~o, 
(2) 

c~' = / z / s i n  ~0', fl' = a~ sin 99', 

in which ~0 is the angle that the incident beam makes 
with the surface of the crystal and qg' is the correspond- 
ing angle for the reflected beam. The quantity a in 
(2) is called the Bragg reflection coefficient and/z the 
attenuation coefficient. 

More precisely, a is the cross section per unit volume 
for Bragg reflection. This quantity depends on both the 
incident-neutron wavelength 2 and the Bragg angle 0 
and is different from zero only if 2 and 0 satisfy Bragg's 
law to within the range of values allowed by the mosaic 
spread in the crystal. In short, 

a = 0 unless ). ~ ).max sin 0, (3) 

where )-max = 4Yr/Khkl and Khk t denotes the magnitude of 
the reciprocal-lattice vector that corresponds to the 
Bragg planes (hkl). 

The attenuation coefficient/z is the cross section per 
unit volume for all collision processes other than 

\ 

Laue Case 

Bragg Case 

Fig. 1. Bragg reflection in a plane slab. Illustration of the Laue case 
(transmission geometry) and the Bragg case (reflection geometry). 
The dashed line represents a Bragg plane. 
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Bragg reflection. Thus, /z includes contribution not 
only from true absorption (e.g. radiative capture) but 
also from incoherent scattering and coherent inelastic 
scattering. For X-rays, the corresponding contribu- 
tions to /z come from photoelectric absorption, 
Compton scattering and Rayleigh scattering. Explicit 
expressions for a and /z for neutrons are given in 
Appendices A2 and A3. It will be noted that when 
Bragg's law is satisfied we usually have # << cr for 
neutrons and /~ >> cr for X-rays. 

The Darwin equations (1) describe multiple Bragg 
reflection within a mosaic crystal and can be derived 
either by simple heuristic considerations (Darwin, 
1922) or, more rigorously, within the framework of 
neutron transport theory (Sears, 1977, 1989). In the 
derivation, it is assumed that multiple Bragg reflection 
within the individual mosaic blocks (and the asso- 
ciated primary extinction) can be neglected, so that 
only multiple Bragg reflection between different 
mosaic blocks (and the associated secondary extinc- 
tion) need be taken into account. This requires that the 
linear dimensions of the mosaic blocks be small in 
comparison with the primary extinction length. In 
addition, it is assumed that cr and /z are constant 
throughout the crystal, which requires a homogeneous 
mosaic structure. These requirements are not always 
well satisfied for the small mosaic crystals that are 
used as samples in crystal structure determinations, 
and even less so for the large mosaic crystals that are 
used as monochromators. Nevertheless, they are 
convenient to ensure a mathematically tractable 
problem. 

Before we can solve the differential equations (1), we 
must specify appropriate boundary conditions. If the 
inCident-neutron current is normalized to unity then, for 
the Laue case, these conditions are 

I(0) = 1, I'(0) = 0, (4) 

and, for the Bragg case, 

I(0) = 1, l'(d) = 0. (5) 

Each neutron that is incident on the crystal is Bragg 
reflected, absorbed or transmitted. By 'absorption', we 
now mean all collision processes other than Bragg 
reflection, i.e. all processes that contribute to the 
attenuation coefficient /x. Then neutron conservation 
requires that 

R + A  + T = 1, (6) 

where R is the reflectivity, i.e. the fraction of incident 
neutrons that are Bragg reflected, A the absorptivity and 
T the transmissivity. For X-rays, the relation (6) 
expresses energy conservation. The reflectivity is 
given in the Laue case by 

R = I'(d) (7) 

and in the Bragg case by 

R = I'(0). (8) 

In both cases, the transmissivity is given by 

T - -  I(d). (9) 

Thus, after we solve the Darwin equations (1) with the 
boundary conditions (4) and (5), the desired quantities 
R, A and T can be obtained from the preceding four 
relations. 

Equations of the form (1) also occur in other 
areas. For example, Hamilton (1957) considered 
multiple Bragg reflection in a mosaic crystal of 
arbitrary size and shape, where the currents I and / '  
now depend on all three space coordinates (x,y, z), 
and showed that the currents obey a set of coupled 
equations that are formally the same as (1). These 
are now usually called the Hamilton-Darwin equa- 
tions. Later, Takagi (1962, 1969) and Taupin (1964) 
considered, independently, the problem of dynamical 
diffraction in weakly deformed crystals, where the 
amplitudes of the Bloch waves vary only slightly 
over distances of the order of the lattice constant 
and showed that to a good approximation these 
amplitudes obey coupled equations that are formally 
identical to the Hamilton-Darwin equations except 
that the coefficients are now imaginary. Werner, 
Berliner & Arif (1986) have published a very 
elegant review of the Hamilton-Darwin and 
Takagi-Taupin equations in which they elucidate a 
number of formal properties of their solutions. They 
show, for example, that a general solution of the 
Hamilton-Darwin equations can be obtained as an 
infinite series of modified Bessel functions, while the 
corresponding solution of the Takagi-Taupin equa- 
tions involves ordinary Bessel functions. Although 
this series solution also applies to the original 
Darwin equations (1), it is of less interest here 
because the exact solution of these latter equations 
can be obtained in closed form as we show in the 
next section. 

3. Solution of  the Darwin equations 

The Darwin equations (1) are a coupled system of 
two linear homogeneous first-order differential equa- 
tions with constant coefficients. As such, they should 
be exactly solvable in terms of elementary functions. 
That such a solution has previously been obtained 
only for special cases may be due to the algebraic 
complexities that arise. This is the kind of problem 
that is ideally suited to a computer algebra program 
and we have been able to obtain the complete and 
exact analytical solution of these equations for the 
neutron currents l(z) and l'(z) using the DSolve 
function in the program Mathematica (Wolfram, 
1991). 
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Note, first of all, that it is evident from the form of 
the Darwin equations that the reflectivity, absorptivity 
and transmissivity are functions of three dimensionless 
variables: 

R = R(a, b, (), 

A = A(a,b ,  (), (10) 

T = T(a, b, (), 

in which 

a = ctd = /z t ,  

b = /3d  = at, 

( = sin ~0/sin ~0' 

(11) 

and t = d~ sin q9 is the thickness of the crystal in the 
direction of the incident beam. We find that the solution 
can be simplified by introducing the following auxiliary 
quantities: 

p = (a + b)(1 + 0 / 2 ,  r = (/32 _ ( b 2 ) 1 / 2 ,  
(12) 

q = (a + b)(1 - ()/2,  s = (q2 jr. (b2)1/2. 

Then, for the Lane case, the general solution of the 
Darwin equations can be expressed as 

l(z) = exp( -pz /d)[cosh(sz /d)  - (q/s)sinh(sz/d)],  

l'(z) = e x p ( - p z / d ) ( b / s )  sinh(sz/d),  (13) 

which then gives 

R -- exp ( -p ) (b / s )  sinh s, 

T = exp(-p)[cosh s - (q/s) sinh s]. 
(14) 

The corresponding solution for the Bragg case can be 
expressed as 

Z(z) = e x p ( - q z / d )  

f r cosh[r(1 - z/d)] + p  sinh[r(1 - z / d ) ] )  
X 

l r cosh r + p sinh r f 

e x p ( - q z / d ) {  b sinh[r(1 - z/d)] 
r c-~sh r ~ psi--n-hr } '  (15) 

l'(z) 

and this gives 

R = b / (r  coth r + p), 

T = r e x p ( - q ) / ( r  cosh r + p sinh r). 
(16) 

In the Laue case, Darwin(1922) obtained an expression 
for R that is equivalent to (14). However, in the Bragg 
case, he only solved equations (1) for an infinitely thick 
crystal (see §5.2). Thus, the general expression (16) for 
R is a new result, as are also both the above expressions 
for T. 

It is, of course, not necessary to use a computer 
to solve the Darwin equations (1). The solution can 
easily be obtained manually by the substitution 
method found in elementary text books. However, 
until one realizes that the parameters (12) are the 

natural quantities in terms of which to express the 
solution, one tends to get bogged down in the 
algebra, particularly in the Bragg case. This 
realization comes immediately when one inspects 
the solution generated by Mathematica, and this is 
the real advantage in using it. This may also explain 
why the general solution was not obtained by earlier 
authors who worked on this problem. 

It will be noted in passing that the general solutions of 
both the Hamil ton-Darwin equations and the Takagi- 
Taupin equations also contain exponential factors 
similar to those in (13) and (15) above (Werner, 
Berliner & Arif, 1986). For the Takagi-Taupin 
equations, these factors are, of course, complex 
exponentials. 

Figs. 2-5 illustrate the way in which the reflectivity R 
varies with b for representative values of a and ( for 
both the Laue and Bragg cases. We see that R is always 
a monotonically increasing function of b and a 
monotonically decreasing function of a and (. Note 
also that the reflectivity begins to saturate at much 
smaller values of b in the Laue case than in the Bragg 
case. 
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Fig. 2. The reflectivity R(a, b, 0 as a function of b for symmetric 

reflections (( = l) in the Laue case. The curves are calculated for 
a = 0.00, 0.25, 0.50, 0.75 and 1.00 (reading from top to bottom). 
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Fig. 3. The reflectivity R(a, b, 0 as a function of b for symmetric 
reflections (( = l) in the Bragg case. The curves are calculated for 
a = 0.00, 0.25, 0.50, 0.75 and 1.00 (reading from top to bottom). 
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4. Special cases 

We now demonstrate that the general results (14) and 
(16) reduce to those obtained by earlier authors in a 
number of special cases. 

4.1. Zero Bragg reflection 

Suppose we are well away from the Bragg position 
(3) so that cr = 0 and, hence, b = 0. We then find for 
both the Laue and Bragg cases that 

R = 0 ,  

T = exp( -a ) ,  

A -- 1 - exp(-a) .  

(17) 

Here, there is no Bragg-reflected beam and the incident 
beam is simply attenuated exponentially inside the 
crystal. In particular, for normal incidence (~o = zr/2), 
we get 

T = exp(-/zd),  (18) 

which is the familiar Lambert law (Sears, 1989). 

~,~ 0.3 
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~= 1,2,3,4,5 

0.5 1.0 1.5 

b 

Fig. 4. The reflectivity R(a, b, 0 as a function of  b for a = 0.1 in the 
Laue case. The curves are calculated for ff = 1, 2, 3, 4 and 5 
(reading f rom top to bottom). 
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Fig. 5. The reflectivity R(a, b, ~) as a function of  b for a = 0.1 in the 
Bragg case. The curves are calculated for ff = 1, 2, 3, 4 and 5 
(reading from top to bottom). 

4.2. Zero absorption 

Suppose, on the other hand, that/z = 0 and, hence, 
a = 0. We then find, in agreement with Sears (1977, 
1989), that, for the Laue case, 

1 - exp[-b(1 -t- O] 

1 .1. ~ (19) 
T = ~" .1. exp[-b(1 .1. 0] 

l + f f  

and, for the Bragg case, 

R = 2/{(g + 1 ) +  ( ~ -  1) coth[b(¢ - 1)/2]}, 
(20) 

T = (1 - 0/{exp[b(1 - 0] - g}. 

In both cases, R .1. T = 1 and A = 0 as it should. 

4.3. Symmetric reflection 

We now consider the case of a symmetric reflection 
where ~0' = ~o and ~ = 1. In the Laue case, this means 
that the Bragg planes are perpendicular to the surface of 
the crystal and, in the Bragg case, they are parallel to 
the surface. 

For the Laue case, we then get 

R = ½exp(-a)[1 - exp(-2b)],  
(21) 

T = ½exp(-a)[1 .1. exp(-2b)].  

Note that R .1. T = exp( -a )  and, hence, that 
A = 1 - e x p ( - a ) .  This expression for A is the same 
as when there is no Bragg reflection (see §4.1). In other 
words, the presence of the Bragg-reflected beam does 
not affect the absorptivity in the Laue case. 

For the Bragg case, we find that 

R = b/{[a(a + 2b)] 1/2 coth[a(a + 2b)] 1/2 + (a + b)}, 

T = [a(a + 2b)]l/z/{[a(a + 2b)] 1/2 cosh[a(a + 2b)] 1/2 

+ (a + b) sinh[a(a + 2b)]1/2}. (22) 

In this case, R + T # exp ( - a )  and A # 1 - exp( -a ) .  
In other words, the presence of the Bragg-reflected 
beam changes the absorptivity of the crystal. This 
type of phenomenon is generally called 'anomalous 
absorption'. 

In the dynamical theory of diffraction, which applies 
to an ideally perfect crystal, the anomalous absorption is 
due to the Borrmann effect, i.e. to the fact that under 
Bragg-reflecting conditions one component of the wave 
function has nodes at the atomic positions and, hence, is 
not attenuated by absorption (Batterman & Cole, 1964; 
Sears, 1989). In this case, one finds anomalous 
absorption in both Laue and Bragg cases. For a mosaic 
crystal, on the other hand, the anomalous absorption has 
nothing to do with the Borrmann effect. Its origin lies in 
the nature of the Darwin equations and it occurs only in 
the Bragg case as we have just seen. 
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Expressions for R equivalent to (21) and (22) were 
obtained by Zachariasen (1945) from a direct solution of 
the Darwin equations for symmetric reflections. The 
result for the Bragg case can be expressed alternatively 
as 

R=0-/([/z(/z + 20")] 1/2 coth{t[/z(/z + 20")] 1/2 } q- (/Z -~- 0")). 

(23) 

Bacon & Lowde (1948) have asserted that the 
reflectivity for asymmetric reflections can be obtained 
simply by replacing/z by/z(1 + 0 / 2  in (23). However, 
this prescription does not agree with our general result 
(16). 

4.4. Zero absorption and symmetric reflection 

Finally, we consider the case of a symmetric 
reflection with zero absorption. We then find, this 
time in agreement with Bacon & Lowde (1948), that, in 
the Lane case, 

R = ½[1 - exp(-2b)],  
(24) 

T = ½11 + exp(-Zb)], 

and, in the Bragg case, 

R = b/(1 + b), 
(25) 

T -  1/(1 + b). 

In both cases, R + T = 1 and A = 0 as it should. 

5. Limiting cases 

In this section, we consider some limiting cases of the 
general expressions (14) and (16) and show that some of 
them also reduce to results obtained by earlier authors. 

5.1. Thin crystal 

We begin by considering the thin-crystal limit. Thus, 
we assume that d--+ 0 in the sense that a << 1 and 
b << 1. We then find for both Laue and Bragg cases that, 
to first order in a and b, 

R = b ,  
(26) 

T =  1 - ( a + b )  

and, hence, that 

A = a. (27) 

Thus, the dimensionless variables a and b have a simple 
physical interpretation: a is the absorptivity in the thin- 
crystal limit and b is the corresponding reflectivity. 
Expression (26) for the reflectivity is the same as is 
found in the kinematical theory of diffraction (Sears, 
1989). This is as it should be since the kinematical 
theory is valid only in the thin-crystal limit. 

5.2. Thick crystal 

Next, we consider the thick-crystal limit. In particu- 
lar, we assume that d -+ ~ with a > 0. We then find 
that, as we would expect, T -  0 for both Lane and 
Bragg cases and, in addition, R -- 0 for the Laue case. 
For the Bragg case, we find, in agreement with Darwin 
(1922), that 

R = 2y/{(1 + y)(1 + ¢ ) +  [(1 + )/)2(1 + ~.)2- 4~.y2]1/2}, 

(28) 

where y = b/a = 0-//z. If y << 1, which is usually true 
for X-rays, this expression reduces to R = y/(1 + 0-  If 
y >> 1, which is roughly the case for neutrons, it 
reduces to R = 1. 

5.3. Fankuchen limit 

The Fankuchen limit, or Laue-Bragg transition as it 
is sometimes called, occurs when the Bragg angle 0 
equals the angle ot that the Bragg planes make with the 
surface of the crystal (see Fig. 1 and Appendix A1). We 
then have the Laue case when 0 < a and the Bragg case 
when 0 > c~. When 0 - ot exactly, the Bragg-reflected 
beam is parallel to the surface of the crystal and ~0' - 0. 
Hence, the quantity ( -+ cx~ in the Fankuchen limit. 

For the Laue case, it follows from (14) that 

lim (R = [b/(a + b)]exp{-a[(a + 2b)/(a + b)]} (29) 

and, for the Bragg case, (16) gives 

lim (R -- b/(a + b). (30) 
~--+c~ 

In the case of zero absorption, where a - 0, we see that 
(29) and (30) each reduce to 

lim (R = 1. (31) 

These results imply that, for an absorbing crystal, (R 
has a discontinuity at the Laue-Bragg transition but, for 
a non-absorbing crystal, (R has only a cusp at this point. 

When the Bragg-reflected beam is almost parallel to 
the surface of the crystal (i. e. when ~p' is of the order of 
a few minutes of arc, say), it is clear physically that the 
beam should be partially reflected and refracted at the 
surface. This effect is not allowed for in the Darwin 
equations where the neutrons are treated as classical 
particles as far as the multiple-scattering part of the 
problem is concerned (Sears, 1977, 1989). If necessary, 
the effect of specular reflection could, of course, be 
taken into account in an ad hoc way. In contrast, the 
effect of specular reflection and refraction at the surface 
can be taken into account in a rigorous and very natural 
way within the dynamical theory of diffraction because 
this is a wave theory at the outset (Kaganer, Indenbom, 
Vrfina & Chalupa, 1982; Eichhorn, Kulda & Mikula, 
1983). 
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6. Fankuchen gain 

Let R denote the reflectivity in the Bragg case when 
the Bragg planes are at an angle to the surface of the 
crystal such that ( > 1 and let R~ be the correspond- 
ing reflectivity for a symmetric reflection where the 
Bragg planes are parallel to the surface and ( - -  1. In 
paper II, it is shown that the reflected-neutron flux 
(neutrons cm -2) is proportional to (R. Hence, the 
reflected-flux ratio is given by the expression 

G = (R/R~. (32) 

This ratio is then the gain in reflected flux that is 
obtained when the Bragg planes are at an angle to the 
surface and will be called the Fankuchen gain. 

6.1. Early work 

In his original paper, Fankuchen (1937) tacitly 
assumed that R ~_ Rs and, hence, that G "" (. As a 
result, he expected that a large gain in reflected flux 
would be obtained when (>> 1. However, if (>> 1, 
then the path length of the refected beam inside the 
crystal is also large and the reflected beam is strongly 
attenuated by absorption and secondary extinction with 
the result that the value of R is reduced. In fact, it is 
clear from §5.3 that (R _< 1 in the limit ( --~ oo and, 
hence, that R -~ 0 in this limit while G remains finite. 

It was later shown by Bozorth & Haworth (1938) 
that, when the effect of absorption is taken into account, 

G = 2(/(1 + 0 = 2 sin ~o/(sin (p' + sin ~0) (33) 

and, hence, that the maximum value of G is 2. It is 
important to recognize that this oft-quoted expression is 
of quite limited validity. Firstly, it only includes the 
effect of absorption on the reflectivity and ignores the 
effect of secondary extinction, which is usually not 
negligible for neutrons. Secondly, it is only valid for an 
infinitely thick crystal, which again is usually not a good 
approximation for neutrons. 

To overcome these limitations, one must calculate G 
using the general expression (16) for the reflectivity in 
the Bragg case. Extensive numerical calculations of this 
kind for crystals of arbitrary thickness are reported in 
paper II. In the meantime, we confine our attention to 
the two limiting cases that are discussed below. 

6.2. Thin crystal 

In the thin-crystal limit, where absorption and 
secondary extinction are both negligible, the reflectivity 
is given by (26), and (32) for the Fankuchen gain 
reduces to 

G = sin 0 / s in  ~o' (34) 

so that G ~ c~ as ~ - - +  0. While the gain can be 
arbitrarily large in this case, the reflected-neutron flux is 
also vanishingly small. 

6.3. Thick crystal 

When the thick-crystal limit is applicable, we can use 
(28) for R in which absorption and secondary extinction 
are both taken properly into account. In this case, 

and 

R s = y/[1 + ~, + (1 + 2y) 1/2] (35) 

G = 2([1 + y + (1 + 2y)1/2]{(1 + y)(1 + () 

+[(1 + y)2(1 + 0 2 - 4(V211/2} -1. (36) 

Expression (36) is illustrated in Fig. 6, which shows G 
as a function of ( for y --- 0, 1, 2, 3 and 4 (reading from 
top to bottom). The parameter y - - b / a  and charac- 
terizes the relative importance of secondary extinction 
and absorption on G. In particular, when y << 1, 
secondary extinction is negligible in comparison with 
absorption and (36) reduces to (33) as it should. The 
maximum value of G is 2 and this occurs when y --+ 0 
and ( --> o¢. 

In the limit of zero absorption, where a - +  0 and 
y --> oo, (36) reduces to 

1, (>_ 1 (37) 
G =  (, ( < 1 .  

Thus, for a non-absorbing thick crystal, there is no gain 
at all in using a Fankuchen geometry. 

7. Optimum crystal thickness 

The question of optimum thickness is an important 
consideration in the design of neutron monochromator 
crystals. In this section, we discuss this question on the 
basis of the exact solution of the Darwin equations that 
we presented in §3. The notion of optimum crystal 
thickness is very different in the Bragg case from what it 
is in the Laue case, so it is necessary to discuss these 
two cases separately. 

2 . 0  . , . , - , . , ' , ' , ' , ' ' ' 

Fankuchen Gain 
1.8 

1.6 

O 

1.4 

1.2 

1.0 
2 3 4 5 6 7 8 9 10 

Fig. 6. The Fankuchen gain G as a function of ( for an infinitely thick 
crystal. The curves are calculated for y = 0, 1,2, 3 and 4 (reading 
from top to bottom), where y = b/a. 
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7.1. Laue  case 

It is evident from §5 that, if the crystal thickness 
d--+ 0, then the reflectivity R--+ 0 linearly with d. 
Also, in the Laue case, if d --+ oo with a > 0 then 
R --+ 0 again. Since R is a non-negative quantity, there 
must therefore be some intermediate thickness at which 
the reflectivity is a maximum. This can then be regarded 
as the optimum thickness for the particular refection 
under consideration. 

To calculate the optimum thickness, we begin by 
putting 

p = po t , r = rot, (38) 

q -  qo t, S = Sot, 

where t = d~ sin 9 as before and 

Po = (/z + o-)(1 + ¢)/2, r o = (p2o - ¢02) 1/2, 
(39) 

qo = (/z + o')(1 - ¢)/2, So = (q2o + ¢0-2)1/2. 

It then follows from (14) that the optimum thickness is 
given by 

dop t = [ (s ing) /So]coth- l [po/so] .  (40) 

7.2. Bragg  case 

According to (16), R is a monotonically increasing 
function of d in the Bragg case and approaches a 
saturation value Roo, given by (28), as d --+ ~ .  In this 
case, the optimum value of d is not uniquely defined and 
will simply be taken to be the thickness at which 

I 
1 

3 
...4----" / 

I 

k (hkl) 

k" -k" 

(hkl) 
Fig. 7. Parity and time reversal in asymmetric Bragg reflections. The 

upper figure shows the incident-beam directions in r space, and the 
lower figure shows the corresponding wave-vector relationships in 
k space. 

Table 1. Transformation o f  quanti t ies  under  pari ty  (5") 
and  time reversal  ( Y )  

Quantity .~' : 

k - k  - l d  
k' - k '  - k  
Khu --Khu = Kg~i Khu 

_ _ _  

(hkl) (hkl) (hkI) 
F~, F~.-~ =Vh~ Fh,, 
9 ~o 9' 

~ 1/~ 
t t ~t 
Ix Iz l z 
f f  17 (7 

a a ~a 
b b ~b 
R R ~R 
T T See text 

R = xRoo, where x has some arbitrarily specified value 
(x = 0.8, say). We then find that 

dopt --  [ (s ing) / ro]coth- l {[ro  + (1 - x)po]/xro}. (41) 

Note that R << R~ if d << dop t but there is only a 
marginal increase in reflectivity if d >> dop t. In the latter 
case, the fast-neutron background and the order 
contamination will both continue to increase more or 
less linearly with d. Expression (41) therefore repre- 
sents the optimum thickness in the sense that, roughly 
speaking, it gives a large reflectivity while keeping the 
fast-neutron background and the order contamination as 
small as possible. 

8. Parity and time reversal 

As illustrated in Fig. 7, there are four different ways in 
which a monoenergetic beam of neutrons can be 
reflected from a given set of Bragg planes. In this 
final section, we show that these various ways are 
related by parity and time reversal and we calculate the 
way in which the reflectivity transforms under these 
symmetry operations. 

We begin by noting that the condition for Bragg 
reflection is (Sears, 1989) 

k - k' = Khu, (42) 

where k and k' are the incident and reflected neutron 
wave vectors and Khu is the reciprocal-lattice vector 
corresponding to the particular Bragg planes (hkl) under 
consideration. Under the parity operation : (i.e. 
inversion in the origin), 

k --+ - k ,  k' --+ - k ' ,  (43) 

and under time reversal .~  

k --~ - k ' ,  k' --~ - k .  (44) 

These and other related transformation rules are 
summarized in Table 1. 
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With reference to Fig. 7, note that the incident wave 
vector always points to the reciprocal-lattice site and the 
reflected wave vector always points to the origin. Note 
also that under parity 1 ~ 3 and 2 ~ 4, and under time 
reversal 1 ~ 2 and 3 ~ 4. 

The transformation of the unit-cell structure factor 
Fhk l under parity in Table 1 is, of course, just the 
neutron analog of Friedel's law (Friedel, 1913) and is 
valid if the bound coherent scattering lengths bc in (54) 
are all real. Except for a few nuclides (such as 113Cd) 
with absorption resonances at thermal-neutron energies, 
this is an excellent approximation. The fact that/x and cr 
are both invariant under parity and time reversal can be 
deduced from the expressions for these quantities that 
are given in Appendices A2 and A3. 

The way in which the reflectivity R and transmissivity 
T transform under parity and time reversal can be 
obtained from the general solution of the Darwin 
equations given by (14) and (16). Thus, we find that 
for both the Bragg and Laue cases R and T are invariant 
under parity, while, under time reversal, 

R(a, b, ~) ~ R( (a ,  (b, ( -~)  = (R(a,  b, ~). (45) 

This result was originally obtained by Darwin (1922) 
from the way in which the thick-crystal expression (28) 
transforms when the source and the detector are 
interchanged. However, he apparently didn't realize 
that it was true quite generally, nor did he attribute it to 
time-reversal symmetry. Indeed, the concept of time 
reversal was not introduced until ten years later by 
Wigner (1932). 

The transformation of the transmissivity under time 
reversal is more complicated. In the Bragg case, we find 
that 

T ~ exp(2q)T (46) 

but there is no similar simple rule in the Laue case. 
An important practical application of these results, 

which we make extensive use of in paper H, is that the 
reflectivity need only be calculated for compression 
geometry (see Appendix A1). The corresponding values 
for expansion geometry can then be obtained simply by 
using the time reversal symmetry (45). 

A P P E N D I X  A 

The theoretical results presented in the body of the 
paper are of a rather formal nature. In this Appendix, 
we give the additional relations that are needed in order 
to apply the theory to actual numerical calculations of 
the reflectivity of specified crystals such as are given in 
paper II. 

A1. Angular  relations 

As illustrated in Fig. 1, we let ~o denote the angle that 
the incident beam makes with the surface of the crystal 

and 9' the corresponding angle for the reflected beam. 
The Fankuchen factor ff = sin 9 / s in  9' is then the ratio 
of the area of the incident beam to that of the reflected 
beam. We can now distinguish three kinds of reflection 
geometry: 

compression geometry: 9' < 9, ( > 1, 

symmetric geometry: 9' = 9, ( -- 1, 

expansion geometry: 9' > 9, ~" < 1. 

(47) 

Let O denote the Bragg angle (0 < 0 < zr/2) and c~ the 
angle that the Bragg planes make with the surface of the 
crystal (0 ~ ot _ zr/2). If [uvw] is the direction of the 
inward normal to the surface, then ot is also equal to the 
angle between [uvw] and the reciprocal-lattice vector 
Khk I corresponding to the reflection planes (hkl). Thus, 
for example, for a cubic crystal, 

ot = cos-l{(hu + kv -t- lw)/[(h 2 + k 2 + l 2) 

X (U 2 + 1, '2 + W2)]1/2}. (48) 

For compression geometry, 

9 t = 9 = ~ + 0,  I~ - 01. (49) 

There are then three special cases: 

Laue case: 0 < 0 < ot < zr/2, 

Fankuchen limit: 0 < 0 = ot < zr/2, (50) 

Bragg case: 0 < ot < 0 < zr/2. 

In the Laue case, the reflected beam is on the opposite 
side of the crystal to the incident beam (transmission 
geometry), and in the Bragg case the reflected beam is 
on the same side of the crystal as the incident beam 
(reflection geometry). In the Fankuchen limit, where 
9' ~ 0, the reflected beam is parallel to the surface and 
( ~ oe. For expansion geometry, expressions (49) for 
9 and 9' are interchanged while (50) remains the same. 
For symmetric geometry, there are two cases: 

symmetric Laue case: 0 < 0 < ot -- zr/2, 
(51) 

symmetric Bragg case: 0 = a < 0 < rr/2. 

In the symmetric Laue case, the Bragg planes are 
therefore perpendicular to the surface of the crystal and 
in the symmetric Bragg case they are parallel to the 
surface. 

A2. Bragg reflection coefficient 

The Bragg reflection coefficient cr is the cross section 
per unit volume for Bragg scattering and is the product 
of two factors (Sears, 1989): 

cr = a w ( o '  - O). (52) 

The first factor is determi0ed by the crystal structure 
and is given by the expression 
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Q = 23[Fhkl12/V~ sin20, (53) 

in which 0 is the nominal Bragg angle corresponding to 
the neutron wavelength 2, V 0 is the volume of a unit cell 
and Fhk l is the unit-cell structure factor, 

Fhkl -- ~ b~exp(-Wh~)exp[2:ri(hx + ky + lz)]. (54) 

Here, (x, y, z) denotes the position of an atom in the unit 
cell, be is its bound coherent scattering length, 
exp(--Whkt) is its Debye-Waller factor and the sum 
runs over all such atoms. The Debye-Waller exponent 
is given by Whn = (KhklUo)2/2, where ghk l is the 
magnitude of the reciprocal-lattice vector, as before, 
and u 0 is the root-mean-square displacement of the atom 
perpendicular to the Bragg planes. 

The second factor in (52) is the normalized rocking 
curve. 

f W(O" - 0)dO' = 1, (55) 

in which 0' is the actual angle that the incident beam 
makes with the Bragg planes. The function W(O' - 0) is 
sharply peaked at 0' = 0 and its detailed shape is 
characteristic of the mosaic structure of the crystal. In 
particular, W(O" - 0) depends on the sizes and shapes of 
the individual mosaic blocks and on their degree of 
misorientation. This function is usually characterized by 
the parameter (Darwin, 1922) 

g = f W(O" - 0) 2 d0'. (56) 

The full width at half-maximum (FWHM) of W(O" - 0), 
which is often called the mosaic spread, is of the order 
of 1/g. The function W(0' - 0) is sample dependent and 
often has a quite irregular shape (Schneider, 1974) that 
is nothing like the Gaussian model that is commonly 
assumed. In practice, it is, therefore, no less realistic to 
use the even simpler model 

W(O' -O)  = ~" g' IO'-OI < 1/(2g) (57) [ 0, Io" - 01 > 1 / ( 2 g ) .  

In this case, the FWHM is exactly equal to 1/g. This 
model is used in the calculations that are reported in 

paper  H. 
Finally, it will be noted that the X-ray expression for 

a has the same form as (52) and is originally due to 
Bragg, James & Bosanquet (1921a,b). The main 
difference is that the quantity b c in (54) is replaced by 
the corresponding X-ray scattering amplitude. 

A3. Attenuation coefficient 

The attenuation coefficient /z is the cross section per 
unit volume for all collision processes other than Bragg 
reflection. For neutrons, this quantity is given approxi- 
mately by 

/z = (l/V0) ~-~,[ac f (x)  + cr i + O'a], (58) 

in which o- c is the bound coherent scattering cross 
section of an atom in the unit cell, cr i is the bound 
incoherent scattering cross section and cr a is the 
absorption cross section. For most elements, the cross 
sections cr c and cr i are constant while cr a is directly 
proportional to 2 and, hence, to sin 0. The first term in 
(58) represents the contribution from coherent inelastic 
scattering and is based here on an Einstein-like model 
for the lattice vibrations for which we find 

f ( x )  -- 1 - {[1 - exp(-x)] /x} ,  (59) 

in which 

x = (4rru0/2) 2 = 2Whkt/sin 2 0. (60) 

In deriving (59), we have assumed that the motion of 
different atoms is statistically independent but that the 
distribution of vibrational frequencies is the same as in 
the actual crystal. With these assumptions, the coherent 
inelastic scattering term depends only on the root-mean- 
square displacement of an atom u 0, which is the same 
parameter as determines the Debye-Waller factor. 

The best current values for the cross sections in (58) 
have been tabulated by Sears (1992a,b). At thermal- 
neutron wavelengths, the largest contribution to /z 
comes from coherent inelastic scattering in most 
materials at or above room temperature. Except in 
hydrogenous materials, the incoherent scattering term is 
usually very small and the absorption term is usually 
large only at long wavelengths. We emphasize these 
points because International Tables for  Crystallography 
only mention the contribution to /z from absorption 
(Willis, 1992). 

Note added in proof." We have recently learned that 
expressions for R equivalent to (14) and (16) have also 
been obtained by H. C. Hu (unpublished). 

References 

Bacon, G. E. & Lowde, R. D. (1948). Acta Cryst. 1, 
303-314. 

Batterman, B. W. & Cole, H. (1964). Rev. Mod. Phys. 36, 
681-717. 

Bozorth, R. M. & Haworth, F. E. (1938). Phys. Rev. 53, 
538-544. 

Bragg, W. L., James, R. W. & Bosanquet, C. H. (1921a). 
Philos. Mag. 41, 309-337. 

Bragg, W. L., James, R. W. & Bosanquet, C. H. (1921b). 
Philos. Mag. 42, 1-17. 

Darwin, C. G. (1922). Philos. Mag. 43, 800-829. 
Eichhorn, .F., Kulda, J. & Mikula, P. (1983). Phys. Status 

Solidi A, 80, 483-489. 
Fankuchen, I. (1937). Nature (London), 139, 193-194. 
Friedel, G. (1913). C. R. Acad. Sci. 157, 1533-1536. 
Hamilton, W. C. (1957). Acta Cryst. 10, 629-634. 
Kaganer, V. M., Indenbom, V. L., Vr~na, M. & Chalupa, B. 

(1982). Phys. Status Solidi A, 71,371-380. 
Schneider, J. R. (1974). J. Appl. Cryst. 7, 541-546, 

547-554. 



V. F. SEARS 45 

Sears, V. F. (1977). Acta Cryst. A33, 373-381. 
Sears, V. F. (1989). Neutron Optics. New York: Oxford 

University Press. 
Sears, V. F. (1992a). Neutron News, 3, No. 3, 26-37. 
Sears, V. F. (1992b). International Tables for Crystal- 

lography, Vol. C, edited by A. J. C. Wilson, pp. 
383-391. Dordrecht: Kluwer Academic Publishers. 

Sears, V. F. (1997). Acta Cryst. A53, 46-54. 
Takagi, S. (1962). Acta Cryst. 15, 1311-1312. 
Takagi, S. (1969). J. Phys. Soc. Jpn, 26, 1239-1253. 
Taupin, D. (1964). Bull. Soc. Fr. Minkral. Cristallogr. 87, 

469-511. 

Werner, S. A., Berliner, R. R. & Arff, M. (1986). Physica 
(Utrecht), 137B, 245-255. 

Wigner, E. P. (1932). C-0n. Nach. Math. Naturwiss. Kl. 
p. 546. 

Willis, B. T. M. (1992). International Tables for Crystal- 
lography, Vol. C, edited by A. J. C. Wilson, p. 399. 
Dordrecht: Kluwer Academic Publishers. 

Wolfram, S. (1991). Mathematica, a System for Doing 
Mathematics by Computer, 2nd ed. New York: Addison- 
Wesley. 

Zachariasen, W. H. (1945). Theory of X-ray Diffraction in 
Crystals. New York: Wiley. 


